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This paper describes the fundamental principles of launch vehicle flight control analysis and design. In
particular, the classical concept of “drift-minimum” and “load-minimum” control principles is re-examined
and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle con-
straint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can
significantly improve the overall performance and robustness, especially in the presence of unexpected large
wind disturbance. Non-minimum-phase structural filtering of “unstably interacting” bending modes of large
flexible launch vehicles is also shown to be effective and robust.

I. Introduction

Note to Session Organizer/Reviewers: This draft manuscript summarizes very preliminary results obtained dur-
ing an early phase of a project for the launch vehicle flight control systems analysis and design as applied to Ares-I
Crew Launch Vehicle. During the next several months, a more detailed, rigorous study will be conducted in the areas
of drift-minimum vs load-minimum control, flexible-body stabilization and analysis, gain scheduling vs. adaptive
control, etc. A companion paper on dynamic modeling of large flexible launch vehicles is also being submitted to this
Space Exploration and Transportation GNC session.

II. Rigid-Body Control Analysis

Consider a simplified linear dynamical model of a launch vehicle [15], as illustrated in Fig. 2, as follows:

θ̈ = Mαα + Mδδ (1)

Z̈ = − F

m
θ − Nα

m
α +

T

m
δ (2)

α = θ +
Ż

V
+ αw (3)

F = To + T −D (4)

where θ is the pitch attitude, α the angle of attack, Z the inertial Z-axis drift position of the center-of-mass, Ż the
inertial drift velocity, m the vehicle mass, To the ungimbaled sustainer thrust, T the gimbaled thrust, N = Nαα the
aerodynamic normal (lift) force acting on the center-of-pressure, D the aerodynamic axial (drag) force, F the total
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Figure 1. Comparison of Space Shuttle, Ares I, Ares V, and Saturn V Launch Vehicles [1].

x-axis force, δ the gimbal deflection angle, V the vehicle velocity, αw = Vw/V the wind-induced angle of attack, Vw

the wind disturbance velocity, and

Mα = xcpNα/Iy (5)
Mδ = xcgT/Iy (6)

Nα =
1
2
ρV 2SCNα (7)

where Iy is the pitch moment of inertia. For an effective thrust vector control of a launch vehicle, we need

Mδδmax > Mααmax (8)

where δmax is the gimbal angle constraint and αmax is the maximum wind-induced angle of attack.
The open-loop transfer functions from the control input δ(s) can then be obtained as

θ(s)
δ(s)

=
s

∆(s)

∑
Mδ

µ
s +

Nα

mV

∂
+

MαT

mV

∏
(9)

Z(s)
δ(s)

=
1

∆(s)

∑
T

m

°
s2 −Mα

¢
− Mα(F + Nα)

m

∏
(10)

α(s)
δ(s)

=
s

∆(s)

∑
T

mV
s2 −Mδs +

MδF

mV

∏
(11)

where
∆(s) = s

∑
s3 +

Nα

mV
s2 −Mαs +

MαF

mV

∏
(12)

Consequently, the 4th-order system described by Eq. (1) - (3) is completely controllable by δ and is observable by Z;
however, the system is not observable by θ and α.

In 1959, Hoelkner introduced the “drift-minimum” and “load-minimum” control concepts as applied to the launch
vehicle flight control system [6]. The concepts have been further investigated in [7-14]. Basically, Hoelkner’s con-
troller utilizes a full-state feedback control of the form

δ = −K1θ −K2θ̇ −K3α (13)
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Figure 2. Simplified pitch-axis model of a launch vehicle.

for a 3rd-order dynamical model of the form

d

dt




θ

θ̇

α



 =




0 1 0
0 0 Mα

−F/(mV ) 1 −Nα/(mV )








θ

θ̇

α



 +




0

Mδ

T/(mV )



 δ +




0
0

α̇w



 (14)

This 3rd-order system is observable by θ or α. The feedback gains are to be properly selected to minimize the lateral
drift velocity Ż = V (α− θ − αw) or the bending moment caused by the angle of attack. Note that

Ż

V
≡ ∞ = α− θ − αw (15)

where ∞ is often called the flight-path angle.
Instead of measuring the angle-of-attack, we may employ a body-mounted accelerometer, as illustrated in Fig. 2,

as follows:

δ = −K1θ −K2θ̇ + Kaz̈m

= −K1θ −K2θ̇ + Ka

µ
−Nα

m
α +

T

m
δ +

xa

m
θ̈

∂

= −K1θ −K2θ̇ + Ka
xa

m
θ̈ −Ka

Nα

m
α + Ka

T

m
δ

Because the resulting effect of z̈m feedback is basically the same as the α feedback, we consider here only the control
logic described by Eq. (13).

Substituting Eq. (13) into Eq. (1) - (2) or Eq. (14), we obtain the closed-loop transfer function from the wind
disturbance αw(s) to the drift velocity Ż(s) as

Ż

αwV
= − A2s2 + A1s + Ao

s3 + B2s2 + B1s + Bo
(16)
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where

B2 = MδK2 +
T

mV

µ
K3 +

Nα

T

∂

B1 = Mδ(K1 + K3)−Mα +
K2T

mV

µ
Mα +

MδNα

T
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Bo =
TK1

mV

µ
Mα +

MδNα

T

∂
− F

mV
(MδK3 −Mα)

A2 =
T

mV

µ
K3 +

Nα

T

∂

A1 =
K2T

mV

µ
Mα +

MδNα

T

∂

Ao = Bo

For a unit-step wind disturbance of αw(s) = 1/s, the steady-state value of Ż can be found as

Żss

V
= lim

s→0

−(A2s2 + A1s + Ao)
s3 + B2s2 + B1s + Bo

=
−Ao

Bo
= −1 (17)

The launch vehicle drifts along the wind direction with Żss = −Vw and also with θ = θ̇ = α = δ = 0 as t → 1.
It is interesting to notice that the steady-state drift velocity (or the flight path angle) is independent of feedback gains
provided an asymptotically stable closed-loop system with Bo 6= 0.

If we choose the control gains such that Bo = 0 (i.e., one of the closed-loop system roots is placed at s = 0), the
steady-state value of Ż becomes

Żss

V
= lim

s→0

−(A2s + A1)
s2 + B2s + B1

=
−A1

B1
=

−1
1 + C

(18)

where
C =

mV [Mδ(K1 + K3)−Mα]
MαK2T + MδNα/T

(19)

For a stable closed-loop system withMδ(K1 + K3)−Mα > 0, we have C > 1 and

|Żss| < Vw (20)

when Bo = 0. The drift-minimum condition, Bo = 0, can be rewritten as

MδK3 −Mα

MδK1
=

Nα

F

µ
1 +

xcp

xcg

∂
(21)

Consider the following closed-loop transfer functions:

α

αw
= −s(s2 + MδK2s + MδK1)

s3 + B2s2 + B1s + Bo
(22)

δ

αw
= −s(K3s2 + MαK2s + MαK1)

s3 + B2s2 + B1s + Bo
(23)

For a unit-step wind disturbance of αw(s) = 1/s, we have α = δ = 0 as t → 1. However, for a unit-ramp wind
disturbance of αw(s) = 1/s2, we have

lim
t→1

α(t) = MδK1

lim
t→1

δ(t) = MαK1

Consequently, the bending moment induced by α and δ can be minimized by choosing K1 = 0, which is the “load-
minimum” condition introduced by Hoelkner [6]. The closed-loop system withK1 = 0 is unstable because

Bo = − F

mV
(MδK3 −Mα) < 0 (24)
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However, the load-minimum control for short durations has been known to be acceptable provided a deviation from
the nominal flight trajectory is permissible.

A set of full-state feedback control gains, (K1,K2,K3), can be found by using a pole-placement approach or the
linear-quadratic-regulator (LQR) control method [21-22], as follows:

min
δ

Z 1

0
(xT Qx + δ2)dt (25)

subject to ẋ = Ax + Bδ and δ = −Kx where x = [θ θ̇ α]T andK = [K1 K2 K3].

III. Rigid-Body Control Example

Consider a launch vehicle control design example discussed by Greensite in [15]. Its basic parameters are given as
in [15]

Iy = 2.43E6 slug-ft2, m = 5830 slug, T = 341, 000 lb
F = 375, 000 lb, xcp = 38 ft, xcg = 32.3 ft
V = 1320 ft/sec, Vw = 132 ft/sec, αw = 5.73 deg
Nα = 240, 000 lb/rad, Mα = 3.75 s−2, Mδ = 4.54 s−2

(26)

The open-loop poles of this example vehicle are: -1.9767, 0.0488, 1.8967

Note that the wind-induced angle of attack of 5.73 deg considered for this example in [15] is somewhat unrealistic
because it will require a maximum gimbal deflection angle of

δmax >
Mα

Mδ
αw = 4.73 deg

Most practical thrust vector control systems have a maximum gimbal angle constraint of about ±5 deg. In this paper,
we also assume a second-order gimbal actuator dynamics of the form

δ(s) =
ω2

n

s2 + 2≥ωns + ω2
n

δc(s) (27)

where ≥ = 1 and ωn = 50 rad/s.

Table 1. Summary of rigid-body control analysis and design

Case No. Controller Type Feedback Gains (K1,K2,K3) Closed-Loop Poles
1 (θ, θ̇)-Feedback Control [15] (2, 0.8, 0) -1.7488±1.3934j, -0.1596
2 Drift-Minimum Control [15] (2, 0.8, 3.614) -1.9087±4.2774j, 0.0
3 Load-Minimum Control [15] (0, 0.8, 3.614) -1.9323±3.0533j, 0.0471
4 LQR Control (Q = 0) (0.6852, 0.8491, 0.9542) -1.9767, -1.8967, -0.0488
5 Drift-Minimum Control (0.3220, 0.8352, 1.2765) -1.9767, -1.8967, 0.0
6 Load-Minimum Control (0, 0.8352, 1.2765) -3.1323, -0.7816, 0.0405

IV. Flexible-Body Control Analysis

More detailed control and stability analysis results for Figs. 10 and 11 will be included in the final manuscript.
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Figure 3. (θ, θ̇)-feedback control (Case 1).
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Figure 4. Drift-minimum control (Case 2).
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Figure 5. Load-minimum control (Case 3).
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Figure 6. LQR control (Case 4).
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Figure 7. Drift-minimum control (Case 5).
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Figure 8. Load-minimum control (Case 6).
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Figure 9. Case 5 (drift-minimum control) with δmax = ±5 deg.

Figure 10. Illustrations of dominant bending modes and sensor locations (Ref. 2).
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Figure 11. Nichols plot for a baseline pitch-axis flight control system (Ref. 2).
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V. Conclusions
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